84 research outputs found

    An Open Platform to Teach How the Internet Practically Works

    Full text link
    Each year at ETH Zurich, around 100 students collectively build and operate their very own Internet infrastructure composed of hundreds of routers and dozens of Autonomous Systems (ASes). Their goal? Enabling Internet-wide connectivity. We find this class-wide project to be invaluable in teaching our students how the Internet infrastructure practically works. Among others, our students have a much deeper understanding of Internet operations alongside their pitfalls. Besides students tend to love the project: clearly the fact that all of them need to cooperate for the entire Internet to work is empowering. In this paper, we describe the overall design of our teaching platform, how we use it, and interesting lessons we have learnt over the years. We also make our platform openly available.Comment: 6 pages, 8 figure

    A path layer for the internet : enabling network operations on encrypted protocols

    Get PDF
    The deployment of encrypted transport protocols imposes new challenges for network operations. Key in-network functions such as those implemented by firewalls and passive measurement devices currently rely on information exposed by the transport layer. Encryption, in addition to improving privacy, helps to address ossification of network protocols caused by middleboxes that assume certain information to be present in the clear. However, “encrypting it all” risks diminishing the utility of these middleboxes for the traffic management tasks for which they were designed. A middlebox cannot use what it cannot see. We propose an architectural solution to this issue, by introducing a new “path layer” for transport-independent, in-band signaling between Internet endpoints and network elements on the paths between them, and using this layer to reinforce the boundary between the hop-by-hop network layer and the end-to- end transport layer. We define a path layer header on top of UDP to provide a common wire image for new, encrypted transports. This path layer header provides information to a transport- independent on-path state machine that replaces stateful handling currently based on exposed header flags and fields in TCP; it enables explicit measurability of transport layer performance; and offers extensibility by sender-to-path and path-to-receiver communications for diagnostics and management. This provides not only a replacement for signals that are not available with encrypted traffic, but also allows integrity-protected, enhanced signaling under endpoint control. We present an implementation of this wire image integrated with the QUIC protocol, as well as a basic stateful middlebox built on Vector Packet Processing (VPP) provided by FD.io

    pForest: In-Network Inference with Random Forests

    Full text link
    The concept of "self-driving networks" has recently emerged as a possible solution to manage the ever-growing complexity of modern network infrastructures. In a self-driving network, network devices adapt their decisions in real-time by observing network traffic and by performing in-line inference according to machine learning models. The recent advent of programmable data planes gives us a unique opportunity to implement this vision. One open question though is whether these devices are powerful enough to run such complex tasks? We answer positively by presenting pForest, a system for performing in-network inference according to supervised machine learning models on top of programmable data planes. The key challenge is to design classification models that fit the constraints of programmable data planes (e.g., no floating points, no loops, and limited memory) while providing high accuracy. pForest addresses this challenge in three phases: (i) it optimizes the features selection according to the capabilities of programmable network devices; (ii) it trains random forest models tailored for different phases of a flow; and (iii) it applies these models in real time, on a per-packet basis. We fully implemented pForest in Python (training), and in P4_16 (inference). Our evaluation shows that pForest can classify traffic at line rate for hundreds of thousands of flows, with an accuracy that is on-par with software-based solutions. We further show the practicality of pForest by deploying it on existing hardware devices (Barefoot Tofino)

    A 3D MR-acquisition scheme for nonrigid bulk motion correction in simultaneous PET-MR.

    Get PDF
    PURPOSE: Positron emission tomography (PET) is a highly sensitive medical imaging technique commonly used to detect and assess tumor lesions. Magnetic resonance imaging (MRI) provides high resolution anatomical images with different contrasts and a range of additional information important for cancer diagnosis. Recently, simultaneous PET-MR systems have been released with the promise to provide complementary information from both modalities in a single examination. Due to long scan times, subject nonrigid bulk motion, i.e., changes of the patient's position on the scanner table leading to nonrigid changes of the patient's anatomy, during data acquisition can negatively impair image quality and tracer uptake quantification. A 3D MR-acquisition scheme is proposed to detect and correct for nonrigid bulk motion in simultaneously acquired PET-MR data. METHODS: A respiratory navigated three dimensional (3D) MR-acquisition with Radial Phase Encoding (RPE) is used to obtain T1- and T2-weighted data with an isotropic resolution of 1.5 mm. Healthy volunteers are asked to move the abdomen two to three times during data acquisition resulting in overall 19 movements at arbitrary time points. The acquisition scheme is used to retrospectively reconstruct dynamic 3D MR images with different temporal resolutions. Nonrigid bulk motion is detected and corrected in this image data. A simultaneous PET acquisition is simulated and the effect of motion correction is assessed on image quality and standardized uptake values (SUV) for lesions with different diameters. RESULTS: Six respiratory gated 3D data sets with T1- and T2-weighted contrast have been obtained in healthy volunteers. All bulk motion shifts have successfully been detected and motion fields describing the transformation between the different motion states could be obtained with an accuracy of 1.71 ± 0.29 mm. The PET simulation showed errors of up to 67% in measured SUV due to bulk motion which could be reduced to less than 10% with the proposed motion compensation approach. CONCLUSIONS: A MR acquisition scheme which yields both high resolution 3D anatomical data and highly accurate nonrigid motion information without an increase in scan time is presented. The proposed method leads to a strong improvement in both MR and PET image quality and ensures an accurate assessment of tracer uptake

    Prediction of alcohol drinking in adolescents: Personality-traits, behavior, brain responses, and genetic variations in the context of reward sensitivity

    Get PDF
    Adolescence is a time that can set the course of alcohol abuse later in life. Sensitivity to reward on multiple levels is a major factor in this development. We examined 736 adolescents from the IMAGEN longitudinal study for alcohol drinking during early (mean age = 14.37) and again later (mean age = 16.45) adolescence. Conducting structural equation modeling we evaluated the contribution of reward-related personality traits, behavior, brain responses and candidate genes. Personality seems to be most important in explaining alcohol drinking in early adolescence. However, genetic variations in ANKK1 (rs1800497) and HOMER1 (rs7713917) play an equal role in predicting alcohol drinking two years later and are most important in predicting the increase in alcohol consumption. We hypothesize that the initiation of alcohol use may be driven more strongly by personality while the transition to increased alcohol use is more genetically influenced

    Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort

    Get PDF

    Neuropsychosocial profiles of current and future adolescent alcohol misusers

    Get PDF
    A comprehensive account of the causes of alcohol misuse must accommodate individual differences in biology, psychology and environment, and must disentangle cause and effect. Animal models1 can demonstrate the effects of neurotoxic substances; however, they provide limited insight into the psycho-social and higher cognitive factors involved in the initiation of substance use and progression to misuse. One can search for pre-existing risk factors by testing for endophenotypic biomarkers2 in non-using relatives; however, these relatives may have personality or neural resilience factors that protect them from developing dependence3. A longitudinal study has potential to identify predictors of adolescent substance misuse, particularly if it can incorporate a wide range of potential causal factors, both proximal and distal, and their influence on numerous social, psychological and biological mechanisms4. Here we apply machine learning to a wide range of data from a large sample of adolescents (n = 692) to generate models of current and future adolescent alcohol misuse that incorporate brain structure and function, individual personality and cognitive differences, environmental factors (including gestational cigarette and alcohol exposure), life experiences, and candidate genes. These models were accurate and generalized to novel data, and point to life experiences, neurobiological differences and personality as important antecedents of binge drinking. By identifying the vulnerability factors underlying individual differences in alcohol misuse, these models shed light on the aetiology of alcohol misuse and suggest targets for prevention
    corecore